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Abstract--A new technique has been developed to explore the characteristics and dynamics of the 
electrodynamic balance (EDB). It is demonstrated that by trapping a pair of microparticles, the 
electric field of and EDB can be characterized and particle stability can be investigated. The electric 
field in the neighborhood of the null-point was examined by comparing the oscillatory motion of the 
two-particle system with a theoretical analysis. In addition, the relevant balance constants were 
evaluated by five methods: (i) determination of the stabilization strength constant, C1, using 
measurements on two-particle arrays, (ii) determination of the levitation strength constant, Co, 
using measurements on single particles of known mass and charge, (iii) computation of C1 and Co 
by solving the three-dimensional Laplace equation for the non-axisymmetric electrode system, 
(iv) computation of Co using a ring charge simulation technique, and (v) determination of the ratio 
CI/Co by measurements of the marginal stability limit. The results of the different methods are 
compared and shown to be consistent. © 1997 Elsevier Science Ltd. All rights reserved 

I N T R O D U C T I O N  

Electrodynamic containment is one of the principal techniques for manipulating aerosol 
particles for in-situ analysis. The EDB uses ac and dc electric fields to stably trap charged 
particles. Electrodynamic balances (EDBs) were introduced by Paul and Steinwedel (1953) 
for the study of atomic ions, but Straubel (1955, 1956) and Wuerker et al. (1959) adapted the 
device to trap microparticles. Although Wuerker et al. and Straubel demonstrated trapping 
and manipulation of clouds of microparticles, interest in this aspect waned, and the EDB 
became a standard tool for the study of single microparticles. Acoustic levitation of arrays 
of small charged particles has also been demonstrated (Tian and Apfel, 1996), and Vehring 
et al. (1997) revisited the issue of electrodynamic containment and manipulation of particle 
clouds, expanding on the analysis of Wuerker and his colleagues to characterize the effects 
of a dc bias on the compression of particle clouds and to explore particle ejection from 
a double-ring EDB using adc  bias. 

It is highly desirable to be able to chemically characterize particles in the nanometer and 
submicrometer size ranges, which is currently a difficult task. The EDB makes the measure- 
ment of Raman signals possible for particles of order 1 ktm, and time-of-flight mass 
spectrometry (TOF-MS) can be performed on even smaller particles. By trapping clouds of 
aerosol particles and/or using the EDB as an injector for a mass spectrometer, the size range 
of particles that can be chemically analyzed can be greatly increased. 

If an EDB is to be used as a particle injector for a TOF-MS system, a working knowledge 
of the electric field strength is useful to perform calculations of the forces on trapped 
particles. The electric field is highly sensitive to the geometry of the electrodes. The field can 
be calculated using the solution to Laplace's equation, but the solution for a specific 
geometry can be very tedious, particularly if a three-dimensional field must be computed. 
Prior to this study, a solution of the field for a non-axisymmetric electrode geometry has not 
been obtained. An alternate approach is to measure the electric field strength using 
experimental measurements of particle dynamics. This paper presents new experimental 
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methods with which both the ac and dc electric fields can be determined independently, and 
the experimental results are compared with results based on computations of the three- 
dimensional electric fields. 

THEORY 

Electrodynamic trapping 

The electrode configuration used in this investigation and the relevant dimensions are 
presented in Fig. 1. For  positively charged particles, the potentials applied to the upper (U) 
and lower (L) rings are, respectively, 

Vu = - Vac + Vb + V~ COS cot (1) 
and 

V~, = Vao + Vb + V~c cos (,)t, (2) 

where 2Vac is the dc potential difference between the rings, V~c is the amplitude of the ac 
field, and Vb is a dc bias voltage which can be applied to both rings to alter the electric field. 
The circular frequency, o), is related to the ac frequency, J~ by o) = 2~f. The bias voltage is 
usually set equal to zero for particle trapping. 

Generally, the dc field is used to balance vertical forces while the ac field acts to focus 
a charged particle at the null-point of the balance. For  a single particle of mass m and charge 
q, levitated at the mid-plane of the rings, a vertical force balance yields 

- mg + ~ Fi = Co CtVd~ (3) 
i 20  

where g is the gravitational acceleration, 2z0 is the separation distance between the rings, Fi 
represents vertical forces such as those arising from aerodynamic drag or radiation pres- 
sure, and Co is the levitation strength constant, which is a geometrical factor that accounts 
for the deviation of the dc field from the uniform field generated by infinite parallel plates. 

The ac field imposes no net force on a particle when it is stabilized at the null-point, but in 
the neighborhood of the null-point, the radial and axial components of the ac field are 
proportional to the distance from the null-point. Thus, if more than one particle is trapped, 
any particles positioned away from the null-point will experience time-dependent forces 
which are a function of their position in the ac field. 

If the particles trapped in the EDB introduce field effects, Poisson's equation must be 
solved for the potential, but if one assumes that the electric field due to the rings is 
dominant, Laplace's equation V2~b = 0, can be solved for the potential, ~b. The electric field 
is related to the potential by E = - V~b. Several mathematical techniques have been used to 
determine the electric field of an EDB. Frickel et al. (1978) were the first to represent the field 
of a bihyperboloidal EDB as a series of harmonic polynomials, and Hartung and Avedisian 
applied this method to develop a generalized form of the equations to account for different 
electrode geometries. Sloane and Elmoursi (1987) developed a ring charge simulation 
technique to characterize the electric fields in a bihyperboloidal EDB. Davis et al. (1990) 
applied this ring charge simulation method to develop an approximate solution for the 
electric fields generated by double rings, and double-ring double-disk EDBs have been 
analyzed using this method by Davis and Bridges (1994). Recently, Loyalka et al. (1995) 
used a numerical technique based on a Green's function solution for the fields of a represen- 
tative double-ring geometry. All of this prior work is limited to axisymmetric geometries, 
neglecting the effect of supporting rods attached to the rings. As we shall show, the presence 
of supporting rods has some important effects on particle trapping, 

The solution of Laplace's equation for the dc field, based on transforming the spherical 
harmonic solution of the spherical problem to cylindrical (r, z) coordinates, has the form 

e , -  + - - - . . .  . 

LZo ~--o3\~ ~ + % (4) 
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Fig. 1. The electrodes (a) and electrode dimensions (b) used in this study. 

Here er and e~ are unit vectors in the radial and axial directions, respectively, and the 
coefficients Co, C2 . . . .  are obtained by applying appropriate boundary conditions on the 
electrodes and surfaces of the bounding chamber. At the center of the EDB (r = 0, z = 0), 
the field corresponds to that used to derive equation (3). 

The combined ac and dc bias fields have a structure which can be represented by 

E b + E a c = ( V b + V , ~ c o s a ) t ) { F C I F g C 3 (  1 3 )  1 L zg + z-~o 2z2r - 2 r + . ' .  e, 

72C'z  2C3 (2z3 -- 3zrZ) +" " l e z  } (5) 
+ z-T 

where C1, C3, ... are additional coefficients to be determined from the boundary condi- 
tions. Hartung and Avedisian called C1 the stabilization strength constant, and Co is the 
levitation strength constant. 

Near the center of the balance, the higher-order terms in equations (4) and (5) can be 
neglected, and only the constants Co and Ca need be determined to describe the fields. In 
this approximation, the ac field is linear in r and z. In the experiments and analysis outlined 
below we shall set Vb = 0. 

Marginal stability and the equation of motion for a single particle 

The marginal stability theory for a single particle trapped at the center of an EDB has 
been reviewed in detail by Davis (1992); therefore, only a brief overview of the equations 
need be presented here. The axial stability of a levitated particle is governed by the equation 
of motion in the z-direction, 

dZz dz m-d~ 2 = -- mg -- qCo Vd¢ + 2Clq (Vac COS ~ot) ~. 
Zo z~ z - Kd -~ + . Fi, (6) 

where we have assumed Vb = 0. Here, Kd is a drag parameter which, for Stokesian motion 
of the particle, is given by 

Kd = 6~al2/Cc, (7) 

in which a is the radius of the particle, p is the velocity of the surrounding gas, and Cc is the 
Cunningham correction factor (Reist, 1984). When the dc voltage is adjusted so that 
equation (3) is satisfied, the resulting equation can be transformed to Mathieu's equation 
(Davis, 1985). The Matheiu equation has been studied extensively, and its stability charac- 
teristics are presented by Abramowitz and Stegun (1972). Based on these stability criteria, 
maps of the stable and unstable regions can be constructed in :~-/3 space, where the 
parameters c~ and fl are given by 

~ =  and / ~ = - -  (8) 
Zo O t y r o )  -Coo " 

The marginal stability envelope or set ofspringpoints is defined by the boundaries between 
stable and unstable regions in the ~-fl plane. A particle will start to oscillate vertically when 
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the ac field is changed to cause the particle to move from a stable to an unstable region. 
Mfiller (1960) obtained an approximate solution for the lowest portion of the marginal 
stability curve which is in good agreement with more rigorous solutions of the equation of 
motion. His solution for the critical value of fi, above which instability occurs is, 

2 4fl~t ½(99 + 12~ 2) = - x/a(99 + 1272) 2 - (1 + 4~2)(81 + 3682). (9) 

Here, Miiller's original equation has been modified to account for the difference in the 
definition of/3 compared with Hartung and Avedisian. Experimentally, fi can be varied by 
changing either the ac amplitude or the ac frequency. Light-scattering data can be used to 
determine the radius, and for a sphere of known density, p, the mass is given by 
m = 4~zpa3/3. Thus, ~ can be calculated. When the springpoint is reached, one records Va~, 
co, and Vo~. The springpoint corresponding to :~ determines fl, and from the definition of 
// one can calculate the ratio, C~/Co. Therefore, if either Co or C~ can be measured 
independently, the other coefficient can be determined. 

Equat ion  o f  motion for  multiple particles 

To investigate the electric field away from the origin, at least two particles must be 
trapped simultaneously. In that case, the motion of the ith particle is governed by the vector 
equation of motion (Vehring et al., 1997) 

d e ( d  ) . (10) m i ~ r i  -+- Kd i ~tri  -- VG = -- mige z + qiE(ri, t) + ~ qiqj(ri -- rj) 
• 4rC~o]ri rjl 3 jg-i 

Here, ri is the position vector of the ith particle, vc is the velocity vector of the surrounding 
gas, and ~:o is the permittivity of free space. The electric vector E(ri, t) is a superposition of 
the dc, bias, and ac electric fields: 

E(r, t) = Ea~(r) + Eb(r) + Ej~(r, t). (11) 

It is useful at this point to decouple the time-dependent small oscillation due the ac field 
from the large-scale motion which governs the average positions of the particles, r;, by 
writing the approximation (Wuerker et al., 1959; Richardson and Spann, 1984; Arnold and 
Hessel, 1985; Arnold and Folan, 1987) 

rl = ri q- si(t) = ri + 8i cos(o)t + (Pi). (12) 

Here, 8~ is the vector amplitude of the small oscillation and ~0i is the phase shift between the 
particle motion and the ac drive. By substituting for ri and E(r, t) in equation (10) using 
equations (11) and (12), the equation of motion reduces to 

d e d 
mi ~ s  i Jr- Kd, i ~ tS i  = qiEac(ri, t) = qiAac(ri)cos e)t, (13) 

where we have assumed that the gravitational force is balanced by the dc field. Here, Aa~ is 
the amplitude of the ac field at the average radial position of the particle, and Aa~ can be 
obtained from equation (5). Arnold and Hessel solved equation (13), obtaining 

= qiAa,: ( K d ' i ~  (14) 
6i ¢OX/~d2 / -I- m/2o) 2 and q~i = ~ + tan-1 \role°J" 

In our experiments, the two particles had the same charge and mass, and the dc potential 
was set to balance the effects of gravity. Equation (5) shows that the field strength in the 
z-direction is twice that of the r-direction, so the particles are forced into the horizontal 
plane at z = 0 by suitable choice of Vo¢. This simplifies the analysis, for only the r-direction 
need be considered to interpret experimental data. Because of their similar charge and mass, 
the particles repel each other to average radial positions equidistant (/;1 =/;2 = f) from the 
center (r = 0). Figure 2 shows how the particles will be positioned for an intermediate {a)- 
and high (b)-frequency field. At high-frequency the amplitude of oscillation is indiscernable. 
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Fig. 2. Particle position and motion for an (a) intermediate and (b) high-frequency electric field. 

For  the intermediate case, oscillation occurs in the r-direction, and the amplitude of 
that oscillation is a function of the ac field parameters. Thus, we may write the scalar 
amplitude 

~(~) = qAa¢(t 7) qVacf(r) 

+ + 

= qVa¢ //C1F - 3 C3/73 ) 
~ox/K~ + mZ~o z =  \ zg 2 z~ + ' ' "  . (15) 

Provided that higher-order terms can be neglected, equation (15) indicates that a graph of 
measured values of 6 as a function of f should yield a straight line with slope proportional to 
Ct. This makes it possible to measure C1. 

Force balance 

We now determine the equilibrium positions of the particles in the r-O plane as a function 
of the electric field settings. Although the relevant equations can be developed for any 
number of particles, we shall limit the number of particles to two. The force on one of the 
particles is simply a balance between the repulsive Coulombic force and the attractive force 
due to the ac field. Thus, a force balance yields 

,for q2 qEac(r, T) dr -~ 4~z%(2f) 2 - 0. (16) 

Here, the force due to the ac field is averaged over one period, T, of the ac drive. By 
expanding Eac about ~ in a Taylor series and substituting for f using equation (12), we 
obtain 

Eat(r, ~) = Eac(r, z) + Vacf(r-) cos(~r + ~o) cos(ogr) df(r) 
dr f' 

(17) 

Integrating the first term in equation (16), substituting for 6 using equation (15), and using 
the results in equation (17), the force balance reduces to 

df(r) cox/K2a + m2oj z C 2 C1C3r 3 
f ( r )  dr ~=8~eocosq~VaZj 2 =  z~  ~ - 6  z6 - + . . . .  (18) 

Again, we have an independent relationship which can be used to obtain the coefficients of 
equation (5), for a graph off(f)[df(()/dr] versus ~ should yield a straight line with slope 
proportional to C 2 when the higher-order terms are negligible. However, this relationship is 
more easily used than equation (15), for the only experimental data needed is the separation 
distance between the two particles. 
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E X P E R I M E N T S  

Three types of experiments were performed: (i) experiments on two-particle arrays in 
which the charge and mass of the particles were known and identical, (ii) experiments on 
single particles of known charge and mass, and (iii) stability experiments on liquid droplets 
in which the charge was not known, but the mass could be obtained from light scattering 
data. 

Multiple particle studies 

The experimental apparatus has been described in detail by Vehring et al. (1997), so only 
a brief review of the system will be presented here. Solid sodium chloride or sodium sulfate 
particles were formed by allowing larger aqueous solution droplets to evaporate thereby 
forming a solid residue. Parent particles were generated using a TSI model 3450 vibrating 
orifice aerosol generator (VOAG) (Berglund and Liu, 1973), and their charge was regulated 
using a charging plate (Reischl et al., 1977) which was attached to the VOAG head. The 
charging plate had a small orifice through which the droplet stream could pass. The induced 
charge could be altered by varying the potential applied to this plate. The total charge on 
the droplets which formed upon jet break-up was measured by collecting the particles in 
a Faraday cup. The Faraday cup was shielded from external stray fields, and the current-to- 
ground was measured with a Keithley Instruments 610C electrometer. By dividing the 
current by the frequency of particle generation, the charge on each particle was obtained. 
Each droplet had a charge between 6.0x 10 - 1 6  and 2.5x 10-15C depending on the 
backing pressure of the VOAG and the potential applied to the charging plate. The mass of 
the particles was obtained from the VOAG operating parameters using the relationship 

Q 
m =~p ~i ciMi, (19) 

in which Q is the volumetric flow rate of the liquid stream,.[p is the frequency of particle 
generation, and ci and Mi are the concentration and molecular weight of species, i, 
respectively. It is likely that the particles were nearly spherical, so an aerodynamic radius for 
the particles was estimated by assuming that the particles were non-porous. Based on this 
assumption, the particles investigated range in radius from 0.8 to 3.9 t~m. 

The chamber used to house of EDB is depicted in Fig. 3. The particles were allowed to 
dry in a settling column which was 0.82 m long with a circular cross-sectional area of 
7.85 x 10 -3 m 2. Once dried, the particle flow was funneled into the top access port of 
a stainless-steel chamber which housed the double-ring EDB. The chamber had a volume 
of 350 ml, and nitrogen gas was passed by the particles at up to 1.5 m l s -  ~ in order to ensure 
that the particles were dry. 

Often, many particles were trapped, and in this event the ac amplitude was lowered to 
reduce the number to two particles by destabilizing the other particles. Once two particles 
were stabilized, photographs of the particles were taken with a SLR camera (Nikon F90) at 
different ac field settings. The camera was mounted at an angle of 23 ° from the vertical axis 
of the balance chamber. A magnification of 1.1 was obtained using a zoom lens (Sigma, 
28-70/2.8), a 2X tele-converter, and a 56 mm extension tube. In order to obtain the position 
of the particles at various field settings, color slides (Kodak Ektachrome Elite 100) were 
magnified, and calipers were used to determine the particle positions. These measurements 
were then rescaled by measuring the inner diameter of the rings. The dimensions of interest 
were the average radial position of each particle and the amplitude of oscillation, the 
variables appearing in equations (15) and (18). 

Similar experiments were done with single levitated particles which were generated in the 
same fashion as the two-particle arrays. In this case, the dc field was probed rather than the 
ac field. Because the mass and charge of the particle were known, the levitation strength 
constant, Co, could be obtained from the dc potential required to balance the particle using 
equation (3). 
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Fig. 3. Front view of the EDB chamber. 
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Fig. 4. Top view of the EDB chamber with peripheral equipment. 

Stability measurements 

To independently validate the results of the measurements on the salt particles, marginal 
stability measurements were performed on droplets of low vapor pressure esters of phthalic 
acid, dioctylphthalate (DOP) and dibutylphthalate (DBP). A top view of the EDB and 
peripherals used to make springpoint measurements is shown in Fig. 4. Droplets 
(a ~ 18-19 ~m) of these materials were trapped in the EDB and springpoints were recorded 
for various ac frequencies. Then the droplets were exposed to the light from a mercury 
arc-lamp to remove charges from the particle by photoemission (Arnold and Hessel). After 
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a significant amount of charge was removed, the springpoints were again measured to 
obtain additional points on the marginal stability curve. 

Droplet radii were measured by comparing angular light scattering data with Mie theory 
(Bohren and Huffman, 1983). A Texas Instruments TSL 218 photodiode array comprise of 
512 photoactive pixels was used to obtain the angular scattering data over the polar angle 
range 76.3 ° ~< 0 ~< 104.9 ° at an azimuthal angle of 90 °. 

RESULTS 

The two-particle experiments showed that at high frequencies ( f >  1000 Hz) particle 
oscillation was indiscernible. Therefore, a high frequency was used to obtain photographs 
useful for characterization of the electric field based on equation (18). This method will be 
called the point method because the particles appeared as spots, and the only measurement 
required is the radial position. At lower frequencies ( < 150 Hz) the particle oscillation was 
too large for the small-oscillation theory to be valid. Therefore, intermediate frequencies 
(150-400 Hz) were used to obtain amplitude measurements that were believed to satisfy the 
small-oscillation condition. These data were analyzed using equation (15), and this method 
will be referred to as the delta method. 

The particles used in the two-particle experiments were sodium chloride having a mass of 
8.7 x 10-15 kg and a charge of 2.5 x 10 ' 5 C. Assuming the spheres to be non-porous, the 
aerodynamic radius of the particles was estimated to be a = 0.99/~m, which yields a drag 
parameter of Kd = 3.01 x 10-1° k g s - 1  

For measurements using the point method, 18 photographs were taken using an ac 
frequency of 1006Hz and an ac voltage that varied over the range 450-1700Vrms.  
Figure 5 shows a plot of J(f)[df(f)/dr] versus i obtained from the high-frequency experi- 
ments. The value of f ( f )  [df(f)/dr]  can be obtained from the field parameters using equation 
(18), and based on that relationship there should be a linear correspondence to f provided 
that higher-order terms are negligible. The linear fit shown in Fig. 5 was constrained to pass 
through the origin in accordance with the form of equation (18). The fit for these high- 
frequency data yielded a slope of (2 .706+0.041)x 107m -4. This corresponds to 
C 1 = 0.0365 ± 0.001. 

Also shown in Fig. 5 are point measurements obtained from lower frequency experiments 
(180 < f <  300 Hz). In this case there was a substantial amplitude of oscillation, so f was 
taken as the mid-point of that oscillation. The slope of the line through these points, 
constrained to pass through the origin, is (5.123 _+ 0.073)x 107 m -4, corresponding to 
C1 = 0.050 ± 0.001. 

This second set of data was also analyzed using the delta method. The specific combina- 
tion of Vac and o) was adjusted to obtain a similar amplitude of oscillation for each point. 
Hence, by changing Vac or co the effect was to change f. Thirty-two photographs were taken 
for various values of the parameters. Figure 6 presents a graph off(f)  versus f based on these 
experiments. The data are fitted by the straight line with slope (1.583 + 0.083) x 104 m 2. 
This leads to C1 = 0.111 ± 0.006, which is substantially larger that the values obtained 
from the point method. 

We should point out that the particles studied were of the order of the wavelength of light. 
Thus, the optical method used to measure the amplitude of the particle oscillation greatly 
overestimated the amplitude because of diffraction effects. The scattering efficiency for the 
salt particles was approximately three. Therefore, the true edge of the particle is obscured by 
a skirt of light at the particle surface. We have tried to depict this in Fig. 2a which shows the 
actual size of the particle and its apparent size. By measuring the outer limit of the image 
obtained photographically the amplitude is overestimated. As a result, C1 is overestimated. 
The measurement of the average position of a particle is subject to less error because 
although the particles appear larger than the actual size, their true radial position is 
unaffected by diffraction (see Fig. 2b). 

Therefore, the delta method is not a good technique for analyzing data at intermediate 
frequency, and the values of C1 obtained using the point method should be more reliable. 
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Fig. 5. The particle position data analyzed using the point method. 
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Fig. 6. Intermediate frequency data analyzed using the delta method. 

To examine the discrepancy among the two estimates of C~ using the point method we 
performed additional measurements. The ratio C1/Co was determined using marginal 
stability measurements, and Co was measured using single particles of independently 
measured charge and mass. 

Marginal stability results 

To obtain C1 via the marginal stability technique, Co must be known because fl versus 
data will only yield the ratio, CI/Co. We obtained Co directly from measurement of the dc 

voltage required to levitate particles of known mass and charge. The apparatus used to 
generate the two-particle arrays was used in these experiments as well. However, a number 
of different particles were used to provide a large database for the determination of Co. Four 
different feed solutions (0.013 M NaC1, 0.110M NaC1, 0.093 M NazSO4, and 0.390M 
Na2SO4) were used to generate particles of different mass. In addition, the charge on the 
particles was varied by adjusting the potential applied to the charging plate. Analysis of 33 
different particles yielded a value of Co - 0.441 _+ 0.014. 

Figure 7 shows the results of the marginal stability study. Two compounds, DOP and 
DBP, were used to obtain the data in the figure. The data conform to the theoretical 
stability limit very well. This agreement was reached by setting C~/Co -- 0.070 in the 
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Fig. 7. Marginal stability data compared with theory for C~/Co = 0.070. 

definition of /L Based on Co = 0.441 +0.014 the marginal stability results yield 
C1 = 0.031 ± 0.001, which is in reasonable agreement with the value 0.0356 obtained from 
the high-frequency two-particle data. 

DISCUSSION 

It is apparent from Figs 5 and 6 that the functions f(r) and f(r)[df(r)/dr] are linear 
functions of f. This implies that the cubic term and terms of higher order in equations (15) 
and (18) are negligible for the range of f studied here. This is not surprising for positions 
closer to the center of the chamber, but it is surprising for the data obtained at f ~ 1.7 mm. 
The inner diameter of the rings is only 5.7 ram, so this value of F corresponds to a position 
that is relatively far from the null-point. We were unable to hold particles at radii greater 
than 1.7 mm, probably due to a decrease in the field beyond that point. This speculation is 
consistent with the fact that any cubic term which becomes significant, acts to decrease the 
r-component of the ac field [see equation (5)]. This result also suggests that truncation of 
the polynomial series after the linear term is valid for fIR <~ 0.3. 

Although the point measurements suffer the least from inaccuracies in the optical 
measurements, one must have an accurate value of the phase shift to calculate C,. The 
accuracy of ~0 is related to the value of Ka [equation (14)]. The value of Ka reported above 
was based on the assumption that the particles were non-porous. As the porosity increases 
Ka increases, and the value of C1 calculated from the point measurements increases as well. 
For  example, a voidage of 50% would result in C1 values of 0.046 and 0.056 for the data of 
Fig. 5. This is a 20% change in C1. 

Errors in the phase shift are likely the reason why the lines in Fig. 5 have such a different 
slope. At intermediate frequency (upper data set) the phase shift is likely different from that 
predicted by small oscillation theory. Hence, a large value of C1 is calculated from the slope. 
As the amplitude of the oscillation increases there is an increasing asymmetry in the 
Coulombic forces due to the 1/r 2 dependence. As a result, the motion of the particle is no 
longer sinusoidal leading to breakdown of the delta method. 

Solution of the nonlinear equation of motion 

To examine the validity of the point measurements, we solved equation (10) numerically 
with no constraint of small particle oscillation. For  two particles of the same mass and 
charge, levitated in the z = 0 plane, the equation of motion reduces to 

dZr dr qVacC 1 q2 
m ~f~ + Ka dr z2 r cos cot + 16~t~or2. (20) 
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Fig, 8, Solutions of equation (20) for different values of C~. 

Again it has been assumed that the truncated series for the ac electric field is valid for the 
region of interest and that the particles do not oscillate vertically. The equation was solved 
using a fourth-order Runge-Kut ta  method with initial conditions r = r- and dr~dr = 0 at 
t = 0. The solution yields a time-dependent trajectory which oscillates about ~ with some 
amplitude that depends on CI, V,~, and ~o. The mean value ~ approaches a constant value as 
time increases, and the asymptotic value of ~ is a function of C1. If the initial value of ( is 
taken to be the asymptotic value corresponding to some specific value of C1, ~ will remain at 
its initial value. For  any other value of C~, ~ will change in time until a new asymptotic value 
is reached. 

Figure 8 shows how C~ affects the solution of equation (20). The initial value of 
corresponds to a measured value from the high-frequency experiments. Notice that if 

C~ = 0.0357 the solution is quasi-stable; otherwise, (drifts  away from the measured value. 
This value of Ca is in excellent agreement with the value obtained using the point method 
with high-frequency data. 

Another interesting aspect of the solution of equation (20) is shown in Fig. 9. Here, all of 
the data obtained from the two-particle measurements and the corresponding solutions of 
equation (20) are plotted versus - Va~ COS q~/o3. The high-frequency results of theory and 
experiment are in excellent agreement, and the theoretical results for intermediate frequen- 
cies fall on the same curve. The data obtained at intermediate frequencies fall below the 
other results by 13%. This suggests that the intermediate frequency data do not satisfy the 
small oscillation condition. A potentially useful dimensionless group which involves 
the correlating variable is qVa~ COS q~/Kdz2~. 

Ring-charge simulation 

The values of Co and C1 obtained from the experiments incorporate the effects of the 
supporting rods. The asymmetry introduced by the rods makes it possible to trap arrays of 
particles that are stationary in the azimuthal direction. This useful result is not possible with 
a perfectly axisymmetric system. But the rods affect the electric fields in ways that have not 
been explored. It is informative to compare theoretical values of the coefficients with the 
experimental results. Davis et al. (1990) developed an approximate solution for Co for the 
axisymmetric double-ring electrode configuration based on the ring charge simulation 
technique. The technique involves placing a number of ring charges on each electrode, 
obtaining the field generated by the different ring charges by a superposition principle. The 
analysis scheme of Davis and his coworkers, which used only eight rings in the simulation, 
should give a reasonable value of Co for the small ring separation used here. Their 
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Fig. 9. Correlated data for the average radial position compared with solutions of equation (20). 

approximation is 

Co = ~9(~_1, ~2)(R 2 + 2'2) 3/2' (21) 

where 
K(~,) K(~2) 

~J(~l, ~_2) - 2R + 2(R: + ZoZ) 1/2' (22) 

and the parameters ~1 and ~2 are defined by 

t 2 t 2 + 4Z 2 
~l = 1 4R 2 and ~2 = 1 4R 2 (23) 

Here, K(~i) is the complete elliptic integral of the first kind, and R, t and Zo are the 
dimensions shown in Fig. lb. For  the dimensions indicated in Fig. lb, equation (21) yields 
Co = 0.410, which is only 7% lower than the value measured by trapping single particles of 
known mass and charge. 

A better understanding of the effects of the asymmetry on the electric fields can be 
obtained by solving the three-dimensional Laplace equation, taking into account the 
support  rods and the chamber boundaries. 

Solution of Laplace's equation for a non-axisymmetric electrode geometry 

The charge simulation technique and the other methods based on axisymmetric elec- 
trodes do not allow for distortions in the field due to the rods which hold the rings in place. 
Therefore, a numerical code was formulated which solved Laplace's equation for the 
chamber and electrode geometries used in the experiments. The method of relaxation was 
used with a fine three-dimensional mesh. The procedure started by setting the potential 
equal to zero everywhere except on the rings and posts which had potentials Va¢ = 10 V and 
Va~ = 0, and Vb = 0. The ac and dc fields were solved for separately, and the superposition 
of these fields was taken to be the field that acted on any trapped particles in the EDB. All 
the chamber walls were kept at ground potential to be consistent with the experimental 
runs. Using the relaxation algorithm, the potential at each grid point was adjusted until all 
the points in the mesh satisfied Laplace's equation to within the desired accuracy. 

The results of the computat ion for the ac field are displayed in three-dimensional form in 
Fig. 10. The ac potential is shown for ox = 0, that is, at its maximum strength, The influence 
of the support  posts is clearly seen in the two ridges which extend out from the central 
depression. 
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Fig. 11. The ac potential distributions corresponding to Fig. 10 for 0 = 0 ° (parallel to the plane of 
the support rods) and 0 = 90 ° (perpendicular). 

A simpler and more useful depiction of the ac field is presented in Fig. 11, which shows 
the potential at the midplane (z = 0) in the plane of the posts (0 = 0 ° or ]]) and in the plane 
perpendicular to the posts (0 = 90 ° or _1_). The distortion of the ac field by the posts is clearly 
indicated by the bulge in the potential and by the deeper potential well in the center of the 
chamber for the parallel slice compared with the perpendicular plane. By curve-fitting the 
data in Fig. 11 and differentiating the resulting function, C1 is obtained by applying 
equation (5). This procedure yields C I [  [ = 0.0428, and C1__ = 0.0317. The mean value of C 1 

(averaged over all 0) should be close to C1±, for the effects of the rods are limited to 
a relatively small range of angles near 0 = 0 °. 

A similar numerical procedure applies for the evaluation of Co. The three-dimensional dc 
field at the midplane (z = 0) is plotted in Fig. 12 for Vac  = V b = 0 and Vd¢ = 10 V for the 
rings and support  rods. One can see that the dc potential is an odd function, and again the 
effects of the support  rods are obvious. 

By computing the dc potential along the z-axis, Co can be determined. Figure 13 shows 
a plot of the dc potential along the axis of the chamber as a function of z. The slope of the 
curve at z = 0 yields the z-component  of the dc field at the center. If  this value is normalized 
by the imposed field (10/Zo V m -  1 in this case), Co is obtained using equation (4). The result 
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is Co = 0.437, which is in very good agreement with the value 0.441 + 0.014 based on single 
particle levitation experiments. 

C O N C L U S I O N S  

A new experimental technique has been presented which employs the levitation of 
two-particle arrays to characterize the electric field and particle dynamics associated with 
a double-ring electrodynamic balance. This two-particle method agrees with theoretical 
computations in that the r-component of the electric field is a linear function of the radius 
for r/R < 0.3. In addition, direct measurement of the levitation strength constant Co has 
been reported for the first time for a double-ring balance, and the distortion of the electric 
field by mounting posts attached to the rings has been demonstrated by solving Laplace's 
equation for a non-axisymmetric geometry. 

Table 1 presents a summary of the findings of this study. There is good agreement 
between all Co values obtained, although the ring charge simulation technique is limited to 
axisymmetric electrodes. In addition, there is reasonable agreement between Ca values 
obtained by all of the techniques except the method requiring measurement of the ampli- 
tude of particle oscillation. As shown in Table 1, the ratio Ca~Co obtained by marginal 
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Table 1. Comparison of C1 and Co values obtained in this study 
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Measured Predicted 

Point Delta Equation Single Marginal Charge Laplace's 
Technique method method of motion particle stability simulation equation 

Results 
Co - -  - -  - -  0.441 - -  0.410 0.437 
C1 0.0365 0.111 0.0357 - -  0.0309* - -  0.032(/) 0.043(11) 
C~/Co . . . .  0.070 - -  0.073(/) o.o98(1r) 

*c1 based on the measured values of Co and C1/Co. 

s t a b i l i t y  (or  s p r i n g p o i n t )  m e a s u r e m e n t s  is in  g o o d  a g r e e m e n t  w i t h  t h e  r a t i o  d e t e r m i n e d  

f r o m  t h e  v a l u e s  of  C 1 .  a n d  Co c o m p u t e d  b y  s o l v i n g  L a p l a c e ' s  e q u a t i o n  for  t h e  a s y m m e t r i -  

ca l  sys t em.  
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