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Mass Transfer from an Oscillating Microsphere
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The enhancement of mass transfer from single oscillating aero-
colloidal droplets having initial diameters ∼40 µm has been mea-
sured using electrodynamic levitation to trap and oscillate a droplet
evaporating in nitrogen gas. The frequency and amplitude of the
oscillation were controlled by means of ac and dc fields applied to
the ring electrodes of the electrodynamic balance (EDB). Elastic
light scattering was used to size the droplet. It is shown that the
mass transfer process for a colloidal or aerocolloidal particle oscil-
lating in the Stokes flow regime is governed by a Peclet number
for oscillation and a dimensionless oscillation parameter that rep-
resents the ratio of the diffusion time scale to the oscillation time
scale. Evaporation rates are reported for stably oscillating droplets
that are as much as five times the rate for evaporation in a stagnant
gas. The enhancement is substantially larger than that predicted by
quasi-steady-flow mass transfer. C© 2002 Elsevier Science (USA)

Key Words: elastic light scattering; electrodynamic balance; evap-
oration, mass transfer; oscillation.
INTRODUCTION

Mass transfer between colloidal or aerocolloidal particles and
the surrounding fluid or gas can be enhanced by oscillating the
particles. Particle oscillation can be achieved by a variety of
methods, including acoustic oscillation, electric field oscillation
for charged particles, and magnetic field oscillation for magnetic
particles. The mass transfer process considered here is aerocol-
loidal droplet evaporation.

Evaporative mass transfer from an aerosol droplet has been
the object of numerous theoretical and experimental studies dat-
ing from Maxwell’s (1) analysis of simultaneous heat and mass
transfer from an evaporating droplet to a surrounding stagnant
gas. Reviews of aerosol evaporation/condensation processes to
or from stagnant gases have been published by Wagner (2) and
Kulmala and Vesala (3). If the droplet is in motion relative to
the surrounding gas, heat and mass transfer fluxes can be en-
hanced. Kronig and Bruijsten (4) analyzed heat and mass trans-
fer between a sphere and a steady low Reynolds number flow,
and Acrivos and Taylor (5) and Rimmer (6, 7) improved on
the theory using the method of matched asymptotic expansions.
1 To whom correspondence should be addressed.
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Rimmer’s solution for the dimensionless mass transfer coeffi-
cient, the Sherwood number, as a function of the Peclet number,
Pe = 2au∞/Di j = ReSc, is

Sh = 2 + 0.5Pe + f (Sc)Pe2 + 0.25Pe2 ln Pe + · · · +, [1]

in which the Schmidt number is Sc = ν/Di j , Re = 2au∞/ν is
the Reynolds number, and

f (Sc) = −1

4
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where γ is Euler’s constant (γ = 0.57722 . . .). Here the Sher-
wood number is Sh = 2aKG/Di j , in which KG is the gas phase
mass transfer coefficient, Di j is the diffusivity of the vapor in
the surrounding gas, u∞ is the bulk gas velocity, a is the droplet
radius, and ν is the kinematic viscosity of the gas.

The original result published by Rimmer was incorrect, but
he published a correction the following year (7). In the limit
Sc → ∞, f (Sc) reduces to 0.03404, which recovers the solution
of Acrivos and Taylor.

Taflin and Davis (8) and Zhang and Davis (9) used electro-
dynamic levitation to hold a single droplet in a low Reynolds
number gas stream, and they varied the gas flow rate to alter
the Peclet number. Zhang and Davis proposed an interpolation
formula based on the low-Pe asymptotic solution of Kronig and
Bruijsten and the high-Pe solution of Levich (10). Their corre-
lation has the form

Sh = 2 +
[
(0.5Pe + 0.3026Pe2)−n + (

1.008Pe1/3
)−n

]−1/n
,

[3]

which recovers the asymptotic limits for both high and low Pe.
They found that the choice n = 3 agrees best with experimen-
tal data, but n = 2 agrees with data nearly as well. For Pe < 1
their data are in good agreement with the results of Acrivos
and Taylor and Rimmer, but for Pe > 1 the theoretical solutions
greatly exceed the measured mass transfer rate.
0021-9797/02 $35.00
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FIG. 1. A comparison between the Sherwood numbers calculated using
Eqs. [1] and [3] and previously published data for steady flow.

To illustrate the effects of steady particle motion on the mass
transfer process, Rimmer’s equation and the interpolation for-
mula of Zhang and Davis are compared with the experimental
data of Taflin and Davis and Zhang and Davis in Fig. 1. Rimmer’s
theory fails for Pe > 1, and the data scatter around the interpo-
lation formula given by Eq. [3] with n = 2 or 3. We note that
Eqs. [1] and [3] reduce to Sh = 2 for a stagnant surrounding
medium, and for Pe < 0.1 Fig. 1 shows that there is very little
effect of convection on the Sherwood number for steady flow of
the surrounding fluid. For mass transfer in a stagnant medium
the time rate of change of the particle mass, m, is given by the
Maxwell (1) equation,

dm

dt
= −4πaDi j Mi

R

[
po

i (Ta)

Ta
− p∞

T∞

]
, [4]

where R is the ideal gas constant, Mi is the molecular weight
of the evaporating species, po

i (Ta) is the vapor pressure of the
evaporating species at the interfacial temperature, Ta , p∞ is the
partial pressure of the vapor in the bulk gas, and T∞ is the tem-
perature of the bulk gas. If the evaporation rate is sufficiently
slow, the interfacial temperature remains very close to the bulk
gas temperature. In this case, writing m = 4πρa3/3, Eq. [4] can
be integrated to obtain the droplet radius as a function of time
to give

a2 = a2
0 − 2Di j Mi

ρRT∞

[
po

i (T∞) − p∞
]
(t − t0). [5]

Here ρ is the particle density. In this quasi-steady-state approx-
imation a0 is the particle radius at time t0. This result can be
expected to give a lower limit on the evaporation rate for com-
parison with the effects of particle motion on the mass transfer.

Tian and Apfel (11) studied droplet evaporation by levitating

single drops and arrays of drops using an acoustic field gener-
ated by a standing wave. Water drops and ethanol drops having
AL.

diameters of order 1 mm were charged to prevent coalescence.
The number and size of drops were controlled by the amplitude
of the acoustic vibration and the applied dc voltage. They found
that their evaporation data agreed with Eq. [4] with the surface
temperature given by

Ta = T∞ − Di j Mi L

k R

[
p∞
T∞

− p(Ta)

Ta

]
, [6]

where L is the latent heat of vaporization, and k is the thermal
conductivity of the gas.

The evaporation rate data for single drops were found to fol-
low Eq. [5]; that is, the square of the radius was found to be a
linear function of time. There was no appreciable effect of the
streaming current on the evaporation rate. In their case, however,
the streaming velocity was only of order 1 cm s−1. Based on the
Sherwood number equation given by Rosner (12),

Sh ≈ 2
(
1 + 0.276Re1/2Sc1/3

)
, [7]

they expected the enhancement due to convection to be less
than 15%.

Although the acoustic streaming in the experiments of Tian
and Apfel did not lead to significant enhancement of the evapora-
tive mass transfer, other oscillation methods that cause a higher
streaming velocity can greatly increase the mass transfer rate. It
is the purpose of this work to examine the enhancement of mass
transfer when a charged sphere undergoes periodic oscillation in
the surrounding fluid due to an oscillatory electric field. To this
end we first examine the governing equations to elucidate the
parameters involved and then describe experiments designed to
measure evaporative mass transfer from a microdroplet.

A conservative estimate of the enhancement of mass transfer
due to particle motion can be obtained by applying quasi-steady-
state theory, that is, by assuming that an equation such as Eq. [3]
applies at each point in time. The time-average Sherwood num-
ber taken over one cycle of oscillation, then, is given by

〈Sh〉 = 1

�t

t+�t∫
t

[2 + g(t)] dt, [8]

in which �t is the period of one oscillation, and, using Eq. [3]
with n = 3, the function, g(t), is

g(t) = {
[0.5Pe + 0.3026Pe(t)2]−3 + [

1.008Pe(t)1/3
]−3}−1/3

,

[9]

and Pe(t) is based on the time-dependent velocity, v(t). An en-
hancement factor, E , can be defined by

1 1
t+�t∫
E =
2
〈Sh〉 = 1 +

2�t
t

g(t) dt . [10]
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As shown below, this approach yields enhancement factors
much lower than measured. A more rigorous approach for pre-
dicting the enhancement and the factors that affect the en-
hancement is obtained by applying the theory for an oscillating
sphere.

THEORY FOR THE OSCILLATING SPHERE

Landau and Lifshitz (13) presented the results for the drag
on a sphere that undergoes translatory oscillations in a fluid for
creeping flow. If the velocity of the sphere is given by

u = u0e−iωt , [11]

then the fluid velocity is given by

v = e−iωt∇ × ∇ × f (r )u0, [12]

where f (r ) is a function only of radial coordinate r measured
from the center of the sphere, and its derivative is given by

f ′ = d f

dr
=

[
Aeikr

(
r − 1

ik

)
+ B

]
1

r2
. [13]

Here the constants A, B, and k are

A = − 3a

2ik
e−ika, B = −a3

3

(
1 − 3

ika
− 3

k2a2

)
,

[14]

K = (1 + i)√
2ν/ω

.

For vertical (z-direction) oscillation with uz = u0e−iwτ the
velocity components of particle motion in spherical coordinates
are given by

ur = u0e−iωt cos θ, uθ = −u0e−iωt sin θ, uφ = 0. [15]

Using these velocity components in Eq. [12], the velocity com-
ponents of the surrounding fluid are

vr = −2u0e−iωt f ′

r
cos θ,

[16]

vθ = u0e−iωt

(
f ′′ + f ′

r

)
sin θ, vφ = 0.

Introducing f ′ and f ′′ based on Eq. [13] in Eq. [16], the fluid
velocity components become

vr = −2u0e−iωt F(r ) cos θ, vθ = u0e−iωt G(r ) sin θ, vφ = 0,
[17]
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where

F(r ) =
[

Aeikr

(
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ik

)
+ B

]
1

r3
,

[18]

G(r ) =
[

Aeikr

(
ikr2 − r + 1

ik

)
− B

]
1

r3
.

The convective diffusion equation for the dilute surrounding
medium is

∂ci

∂t
+ vr

∂ci

∂r
+ vθ

r

∂ci

∂θ

= Di j

[
1

r2

∂

∂r

(
r2 ∂ci
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)
+ 1
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∂

∂θ

(
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∂ci

∂θ

)]
, [19]

where ci is the concentration of the diffusing species in the
surrounding fluid. Using Eqs. [17] and [18] and writing x =
cos θ , the convective diffusion becomes

∂ci

∂t
+ u0e−iωt

[
−2x F(r )

∂ci

∂r
+ (1 − x2)G(r )

∂ci

∂x

]

= Di j

r2

[
∂

∂r

(
r2 ∂ci
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)
+ ∂

∂x

(
(1 − x2)

∂ci
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)]
. [20]

It is convenient to write this governing equation in nondimen-
sional form by introducing the dimensionless quantities

τ = Di j t

a2
, ξ = r

a
, � = ci

ci,a
, Pe0 = 2au0

Di j
, [21]

where ci,a is the interfacial concentration of the diffusing species.
Using these variables, Eq. [20] transforms to

∂�

∂τ
+ Pe0

2
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= 1
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where

F(ξ ) =
[

3

2
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[23]

and

G(ξ ) = 3

2
e−ika(1−ξ )

(
1

k2a2
+ ξ

ika
− ξ 2

)
1

ξ 3
. [24]

This result shows that the concentration in the surrounding
fluid depends on three dimensionless parameters (i) ka, (ii) the
maximum Peclet number, Pe0, and (iii) an oscillation parameter,

ωa2/Di j , that represents the ratio of the diffusion time scale to
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FIG. 2. The octopole EDB electrode configuration. Each ring is composed
of four segments providing X and Y dc control as well as vertical dc control
(ring half-spacing z0 = 1.98 mm, ring radius r0 = 5.56 mm, ring half-thickness
t0 = 0.794 mm, epoxy spacer thickness t1 = 0.794 mm).

the oscillation time scale. These parameters govern the mass
transfer characteristics of the oscillating microsphere.

If the diffusion time scale, a2/Di j , is small compared with
oscillation time scale, ω−1, vapor will diffuse at a greater rate

from the neighborhood of the oscillating particle during one
cycle than it

of a charged particle in an EDB were analyzed by a number of
in the absence
would for a stagnant system. An increased mass investigators (15–19). These analyses show that,
FIG. 3. Overview of the EDB system look
T AL.

transfer rate can also be expected as the Peclet number increases
due to convective diffusion. The parameter ka relates to the
viscous damping of the particle motion.

EXPERIMENTS

Experiments were performed using an octopole double ring
electrodynamic balance (EDB) described by Zheng et al. (14).
The electrode configuration is shown in Fig. 2. This design per-
mits three-dimensional control of the particle position by adjust-
ing the dc potential on each of the ring sections.

The electrodes were mounted in a stainless-steel chamber that
had several optical ports for mounting the peripheral equipment
shown in an overhead view in Fig. 3. By superposition of ac
and dc potentials applied to the two electrodes, a droplet can be
levitated at rest or can be oscillated in either of two modes. If the
ac potential is below a certain critical potential, stable harmonic
oscillation at the frequency of the ac field can be achieved by in-
creasing or decreasing the dc potential from the value required to
balance the gravitational force. The amplitude of the oscillation
is proportional to this dc “offset voltage.”

As shown in the analysis of the equation of motion of a lev-
itated particle in an EDB by Frickel et al. (15), the frequency
of the oscillation is either that of the ac drive or one-half that
frequency, depending on the ac field strength and the fluid me-
chanical drag on the particle. If the ac potential is above the so-
called springpoint potential, large-amplitude oscillation occurs
at half the frequency of the ac drive frequency. The dynamics
ing from the top of the experimental setup.
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FIG. 4. Angular scattering data for a 30.4-µm-diameter dodecanol droplet
compared with Mie theory.

of a dc bias in the vertical direction, three dimensionless pa-
rameters govern the stability characteristics. These are the drag
parameter, δ, ac field strength parameter, β, and the dc imbalance
parameter, σ , defined by

δ = 12πµR

mω
, β = 2g

ω2b

(
Vac

Vdc,0

)
, σ = 4g

ω2b

(
Vdc − Vdc,0

Vdc,0

)
,

[25]

in which m is the particle mass, Vdc is the dc potential, Vdc,0 is
the dc potential necessary to balance the particle weight, Vac is
the ac potential, µ is the gas viscosity, and g is the gravitational
acceleration constant. The balance “length,” b, is defined by
b = z0C0/C1, in which z0 is the half the separation between
rings, and C0, C1 are other experimentally determined constants
for the EDB. It is assumed that particle motion is in the Stokes
flow regime.

The lowest marginal stability envelope (springpoint) is given
by Müller’s approximation (19) for the critical value of β; that is,

βcrit = 1

2
(99 + 12δ2)−

√
1

4
(99 + 12δ2)2 − (1 + 4δ2)(81 + 36δ2).

[26]

For β > βcrit the particle undergoes a large-amplitude oscil-
lation at one-half the frequency of the ac drive. If β is too
large, the particle can be lost, so the ac potential and the drive
frequency must be selected to avoid particle loss.

As depicted in Fig. 3 the trapped particle was illuminated ei-
ther by a He-Ne laser or by a white light source. The He-Ne laser
entered the EDB chamber from an optical port at the bottom. To
size the microsphere, the angular (Mie) scattering was recorded
with a photodiode array (PDA) mounted vertically on one of the
chamber ports at 90◦ to the scattering plane. The particle size
was determined by comparing the PDA data (angles from 78 to
102◦) with Mie theory calculations over the same angle range.
An example of the fit for a 30.4-µm-diameter dodecanol droplet
is shown in Fig. 4; the measured scattered intensity profile is

seen to be in agreement with Mie theory with respect to the an-
gular positions of peaks and troughs. The peak amplitudes vary
NHANCEMENT 355

somewhat from Mie theory computations. Since the array was
not cooled, the disagreement is due partly to noise and partly to
the fact that the pixels were not calibrated to take into account
variations in the optical efficiency of the detector elements.

Two CCD video cameras with 9.45x telemicroscopic lenses
were mounted on ports directly opposite white light sources
to obtain shadow images of the particle in two dimensions.
Figure 5a is an image of a stationary 42-µm-diameter dodecanol

FIG. 5. (a) Video image of a stationary dodecanol microdroplet with a

diameter of 42 µm, and (b) a video image of a microparticle oscillating stably
at small amplitude.
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particle just after it was trapped in the EDB. The video im-
ages recorded during oscillation showed that no distortion of
the droplet from spherical occurred.

The trajectory of the oscillating particle was recorded with
a CCD linescan camera (Reticon) mounted in place of the X-
camera (using the same telemicroscopic lens). The camera had
a single line of 256 pixels aligned in the vertical direction. The
He-Ne laser beam cast a shadow of the trapped particle on the
camera and as the particle oscillated, its magnified shadow cov-
ered different groups of pixels at different times. The resulting
pixel gray-scale profile was, therefore, time-dependent and was
used to determine the particle position as a function of time.
Figure 5b is a video (shadow) image of a microparticle oscillat-
ing with a stable small amplitude.

Representative particle trajectories of large amplitude spring-
point oscillation and small amplitude stable oscillation are
shown in Fig. 6. When the particle goes from a condition of
stable oscillation to oscillation above the springpoint, the fre-
quency changes from the drive frequency to one-half the drive
frequency. Furthermore, the large-amplitude oscillation is not
sinusoidal because the vertical electric field driving the parti-
cle motion is nonuniform, but the small-amplitude oscillation
around the midplane is nearly sinusoidal because the electric
field is almost uniform near the midplane. The particle trajec-
tory during the large-amplitude oscillation is approximately a
“saw tooth.”

Particle velocities corresponding to the trajectories shown in
Fig. 6 are presented in Fig. 7. The velocities associated with
large-amplitude oscillations are significantly distorted from sim-
ple harmonic motion compared with those for small-amplitude
oscillations. The largest velocity encountered was 0.343 m s−1

for a 40.3-µm-diameter droplet. This corresponds to a maxi-
mum Reynolds number of about 0.91, and a mean Reynolds
number for one cycle of 0.45. The mean Reynolds numbers
(〈Re〉 = 2a〈|u|〉/ν based on the mean speed, 〈|u|〉, for one cycle)
varied from 0.083 to 0.45 for the data presented below, and the
maximum Peclet numbers (Pe0 = 2au0/Di j ) varied from 0.369
FIG. 6. Oscillation trajectories of dodecanol droplets. For stable oscillation
f = 111.0 Hz, and for springpoint oscillation f = 110.6 Hz.
AL.

FIG. 7. Particle velocities corresponding to the trajectories of Fig. 6.

to 2.60. The largest Reynolds numbers encountered here are
somewhat beyond the range where creeping flow is rigorously
applicable, but for oscillations in the stable region of the stability
map creeping flow is a reasonable approximation. For stable os-
cillation the largest mean Reynolds number was 0.323. For col-
loidal particles involving very low Reynolds numbers (Re � 1),
the general result that the mass transfer is characterized by ka,
a Peclet number and ωa2/Di j should certainly apply.

MASS TRANSFER RESULTS

Dodecanol has a low vapor pressure, and simultaneous appli-
cation of Eqs. [3] and [5] indicates that evaporation is very close
to isothermal, that is, Ta ∼ T∞. In our experiments nitrogen was
passed through the EDB chamber to remove vapor and maintain
p∞ ∼ 0. In this case Eq. [5] reduces to

a2 = a2
0 − 2Di j Mi po

i (T∞)

ρRT∞
(t − t0). [27]

This result corresponds to an interfacial mass flux, ja ,
given by

ja = Di j

a

Mi po
i (T∞)

RT∞
. [28]

When there is gas phase convection the interfacial mass flux may
be written as

ja = KG
Mi po

i (T∞)

RT∞
, [29]

and Eq. [27] becomes

a2 = a2
0 − 2KGaMi po

i (T∞)

ρRT∞
(t − t0). [30]

Based on Eq. [27], a graph of a2 versus time should yield a

straight line with slope, S0 = −2Di j Mi po

i (T∞)/ρRT∞ provided
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FIG. 8. Evaporation data for dodecanol droplets for various oscillation
frequencies.

that the process proceeds isothermally. The ratio of the slope
of the equation with gas convection (Eq. [30]) to the slope of
the equation for mass transfer to a stagnant medium (Eq. [27])
defines the mass transfer enhancement factor and is given by

E = S/S0 = KGa/Di j . [31]

Figure 8 presents the results for several experiments at 295 K
for dodecanol droplet evaporation plotted as a2 versus time. A
least-squares fit to the data gives a slope of −0.0180 µm2 s−1 for
a stationary particle, and for various conditions of oscillation the
absolute values of the slopes are greater than this limiting case.
This slope is in good agreement with results reported by Taflin
et al. (20) for dodecanol evaporation in N2 at 295 K, which is
S0 = −0.0190 µm2 s−1. The largest slope (−0.0938 µm2 s−1)
was measured for a stably oscillating particle at the largest fre-
quency ( f = 199 Hz). As would be expected, the particles os-
cillating at lower frequencies had lower mass transfer rates. The
other stably oscillating particles at frequencies of 150 and 100 Hz
had slopes of −0.0463 and −0.0382 µm2 s−1, respectively. The
particles oscillating at the springpoint had lower slopes,−0.0372
and −0.0332 µm2 s−1, for 46 and 25 Hz, respectively.
The slopes of the data obtained with and without oscillation factors based on quasi-steady motion are substantially lower

are essentially linear. Consequently, KGa is constant for each

TABLE 1
Experimental Conditions and Measured Enhancement Factors

Calculated enhancement,
Measured E = 〈Sh〉/2

Initial diameter Max speed Frequency enhancement ωa2/Di j

(µm) Motion type (m s−1) (Hz) E = S/S0 Minimum Maximum (×102)

42.1 Stationary 0 0 1 1.0 1.0 0
40.9 Springpoint 0.187 25.0 1.84 1.15 1.31 12.4
40.3 Springpoint 0.343 45.9 2.07 1.22 1.48 22.0
23.3 Stable oscillation 0.084 101.0 2.12 1.04 1.07 16.2

than the measured values.
45.5 Stable oscillation 0.127 152.2
47.2 Stable oscillation 0.163 198.7
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FIG. 9. The mass transfer enhancement factor as a function of dimensionless
arameter ωa2/Di j .

un, and the enhancement factor is a constant for each experiment
ver the range of sizes studied. The largest enhancement factor
E = 5.20) corresponds to the small-amplitude experiment with
he highest frequency ( f = 199 Hz) and an initial radius a0 =
3.6 µm. This also corresponds to the lowest Reynolds number
ncountered, the mean value being 〈Re〉 = 0.083.

Figure 9 is a plot of the enhancement factors versus ωa2/Di j

or the experiments. The large amplitude oscillations, which
ere also at the lowest frequency, have smaller enhancement

actors than the high frequency small amplitude oscillations.
lthough the theory outlined above indicates that the governing
arameters areωa2/Di j , ka, and Pe0, the most significant param-
ter here is ωa2/Di j , which varied from 12.4 to 131. The varia-
ions in ka and Pe0 were smaller [0.0466 ≤ ka/(1 + i) ≤ 0.151
nd 0.369 ≤ Pe0 ≤ 2.60].

In Fig. 9 calculated values for 〈Sh〉/2, based on quasi-steady
otion using the integral in Eq. [10], are plotted for each value of
a2/Di j . To calculate the Peclet number for each frequency, the
easured velocities and the average radius of the droplet during

he experiment were used. As can be seen, the enhancement
2.57 1.07 1.23 93.4
5.2 1.01 1.31 131
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The diffusion coefficient used to calculate the Sherwood num-
ber was estimated from the semitheoretical equation of Fuller
et al. (21), which is based on Chapman-Enskog theory for low
density gases. The estimated diffusivity at 295 K and atmo-
spheric pressure is Di j = 5.31 × 10−6 m2 s−1.

Table 1 summarizes the experimental conditions and enhance-
ment factors. The frequencies reported are the particle oscil-
lation frequencies. For large-amplitude oscillations above the
springpoint the particle frequencies are one-half the ac drive fre-
quency. Since the droplet radius changed during an experiment,
the Sherwood number based on the size during one cycle near the
beginning of a run differed from that at the end of a run. Conse-
quently, maximum and minimum enhancement factors (〈Sh〉/2)
calculated using Eq. [10] and the quasi-steady-flow assumption
were computed for conditions near the beginning and near the
end of each experimental run.

COMMENTS

We have demonstrated that particle oscillation can substan-
tially increase mass transfer rates between a small sphere and
the surrounding fluid. Although this was demonstrated for the
evaporation of single dodecanol droplets in nitrogen, the results
should be applicable to mass transfer in colloidal systems as
well as aerocolloidal systems. Based on these observations one
can expect that the rates of processes involving mass transfer
between a colloidal particle and a surrounding fluid can be sub-
stantially increased by oscillating the particles.

Although, for the limited range of frequencies used here, no
maximum in the enhancement factor was reached as the fre-
quency increased, one can expect a maximum to occur when the
time scale for diffusion is of the order of the time scale of the
oscillation. For a 40-µm-diameter droplet the time scale for dif-
fusion is a2/Di j = 0.0753 ms. For the highest frequency, f ≈
200 Hz, the time scale of the oscillation is ω−1 = (2π f )−1 =
0.8 ms. Thus, one can expect the enhancement factor to decrease
when a2/Di j > ω−1. In this case there is insufficient time for

diffusion to occur during one cycle of oscillation.
AL.

The relatively low mass transfer enhancements reported by
Tian and Apfel using acoustic oscillation appear to be due to
much lower streaming velocities than encountered here.
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